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ON SINGULARITIES OF THE STATE OF STRESS OF AN ORTHOTROPIC HALF-STRIP

V.V. LOBODA

The state of stress is investigated in a half-strip on whose lateral sides
an arbitrary load is given, while boundary conditions of the first or
second kind are realized on the endface. The method of Fourier integral
transforms is used which enables the problem to be reduced to a singular
integral equation with moving and fixed singularities. It is shown that
in the case of a clamped endface the stresses have singularities at the
angular points of the half-strip, and the dependences of the degree of
the singularity on the elastic characteristics of the material are also
determined, Graphs of the stress distribution along the clamped endface
are constructed for different kinds of external load.

Investigations of the plane problem of elasticity theory for an
isotropic half-strip by the wmethod of integral equations, that take
account of the stress behaviour in the neighbourhood of the angular points
were carried out in /1-3/. A solution /1/ has been constructed for the
case of a symmetric load acting on the lateral sides of the clamped half-
strip. The case of a load applied infinitely remotely from the endface is
examined in /2, 3/.

1. We consider an orthotropic half-strip 0 < ;<< o0, [, [<{k on whose sides an
arbitrary stress distribution is given, which without loss of generality we can represent in
the form

onten £ =T 0o} o sn={ 310]

while on the endface there is one of the following versions of the boundary conditions:
u (0, 2) =0, 4, (0,2)=0 (1.2)
6y, (0, ) = P {x;), 05,10, 2) =0 1.3

Here and henceforth the upper expression in the braces corresponds to the symmetric case,
and the lower expression to the antisymmetric case. It is assumed that in the case of the
boundary conditions (1.3}, the system of stresses (1.1), (1.3) is selfequilibrated, and the
function P (z;) for the symmetric problem is even, and for the antisymmetric is odd.

We use the following Hooke's law relationship and the appropriate Lam€ equations /4/:

du, du,

R P 3-1 _ duy duy

Ou=dugp-+ Az, o= de(gE + 22 (1.4)
d%u, G, Py A,
by a3 + ‘a';g:“ + bnm =0, bo=b+41, by -—_-;1-‘::— (1.5)
A

Byp =— S22

12= -

(i=1,2; Ay, Ayg, Ay, Aes  are stiffness characteristics of the material).
Applying the Fourier integral transform /5/ to the Egs.(1.5)
o -

i {t, o2} = S uy (23, ) sintzdz, dx(, 22) = S uz{zi, z;) costzidry
] 0

we obtain a system of equations in thetransforms

d¥ily dily

Ly= G0} — tho 32> — tbiadhy = — thua (0, 72) (1.6)
T a0 dii ~ -
Ly=1by d—;:% - thy —;Ju?:- — iy =1by, g—::' (0, z2) + A4550i2(0, z2)

For the boundary conditions (1.2), (1.3) under consideration, the right sides of system
{6) can obviously not be calculated explicitly. Consequently, introducing the functions
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U (r,), ¢ (z,) and U (p), 7 (p) by means of the formulas

T (p) 12 (pza) dp — U (23) — {ul 0,25, |z:|<h

§ N @)
s o (2 [012 (072, 22| <
0Sq(p)xz(pavz) p =10 (z2) { 0, 22| >k (1.8)
cos () sin (z)
n@={om] BE@={)
we write system (1.6) in the form
Ly=—tbu§ U (p) xa (p22)dp (1.9)

0

Ly=—§ (3200 (0) — 407 (D2 (p22)dp; | 22| <P

¢

The form of the solution of system (1.9) depends on the roots of the characteristic
equation
¥ — 202k + at =0 (1.10)
oy = [0y — (2 4+ Vo) bil2, yt = Apdy, v = Apdytt

The following cases are therefore possible: 1) @) > a,® are real roots; 2) )t < a,t
are complex roots; 3) |a,® | > a;?, 2,2 <<0 are pure imaginary roots. Taking into account that
case 2) is encountered comparatively rarely in practice, while 3) is practically not encountered
generally, we investigate material of type 1l in an example by noting only the fundamental
results for a material of type 2.

Determining the solution of system (1.9) satisfying the transforms of the boundary
conditions (1.1), applying the inversion formulas in gz, /5/, and taking account of the relations

7o =2{v@uend, 20)=—4s@xEny (1.41)
/] 0

we obtain the following expressions for the deformation and stress which are needed in the
subsequent analysis

b A
’ — U ¥:
uz’ (0, .’l:z)—z—; S,. oy dy + anln S IZ(_'V)y dy + Qi (z2) (1.12)
= Zh
Ay © U () ¢
6ii (0, Iz)=——;:w S v _yy d -—% S z:ﬁ’)y dy 4 Qs (22) (1.13)
Zh Zn

Ti={(0ubz) A, Te=o0q"(1+d21), Vs=(20ubu)Thi, Vi=—71/2

Qs (@) = ry § AP [waics (20, )1 (1) + was (22, £) T (2)]
0

=21 ro=r1dn, M&=3S515Xs(t)—S25:X4(?)

Wai g (T2, £) == Caia 1 X1 (T2, ) — Cai1,0 X2 (%2, £)

Wa; (T2, t) = Coi, 2 X3 (£) X2 (Z2, 1) — €2i,1 X4 (£) X1 (2, 8)

Si=8k; —1, Sei=ki+v28;, cu=35ik, c12=0>5sk
Coi==Ssky, Cm==>51ks, Ccsi=3S40s, Cs2=3530s ca= 8283, a2 =516,

8 == (1 — bpok ) (boki) L, 8pui=8; + ik, Ei=as+(— 1) o

ag =200, Gisz= VY [a®—(— 1) as?)/2, ban= V buabaz

X, (22, 2) =y (£:z2)/¥s (B:h),  Xisa ()= Aa (t:R)/ %3 (t:h)

xa (@)= {:: z] s Yalz)= {:; z] , ti=hat

L) =LY@) + I7(@t)+ Pi(?)
h

L @="3\ U@ Vi@ — @'V @ ]y
h
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h
LY (t)=— )4 § U () V2w, 1)y

—h
h

LY ()= (242) S @) [Va(y, ) ma — Valy, t)mo]dy
Zn
h

L () =— (242 § 9@ V1 (v, t) — Valy, ) mal dy
=h

pl (t) = Aa} S pl (11) sinix d.th 1_72 (t) = Ag_;' S Pz (I])COS tzy dzl
0 0
my = Ay (200)", mg = (b1 + bm) (2a5)Y, my=20 (209)~1
Ay = vabyg — by Mg = Mbgg™, Ay = by — by

Vi(g,t) = exp [—o (b — 1) t] Yira Loy (B — y) 2]

Relations (1.12) and (1.13) have been obtained taking the following integration formulas
into account:

zo—y

h
PU () (pr)dp =+ | 70y (1.14)
h

h

q 1

7 (P)x2(pz)dp = — —= S W g,
—h

T2— Y

P38 8

whose validity follows from (1.l11l) and the limit value of the integral /6/

lim § exp (— pz)sin p(y — z2)dp = (y — z)
0 §

2. We assume that the endface of the half-strip is rigidly clamped. Then from the first
relationship of (1.2) it follows that U (r) =0, ¥ (p) =0, I,V () = 0, I,V (t) = 0, while the
second reduces to a singular integral equation in ¢ (¥)

h

S [ L MO, y)]q(y)dy=Rl°(zz) 2.1)
Zn

23— Y

©

My° (z2, y) =S AF'M* (22, 9, 8) dt
H

Rlo (12) = 4A22‘y;l S A{lRﬂ* (12, t) dat
[

Mo * (22, Y, ) = Zony (22, ) exP [— K2 (B — y) 2} + 2.2)
Zon (22, t)exp [— ki(h —p)1]

Ro* (2, ) = wan-y (@2, £) P1 () + W2 (22, £) P2 (2) (2.3)

Z; (22, £) = [1i — 155 Xa ()] X1 (22, £) — [Ls — L;s X3 (8)] X2 (22, 2) (2.4)

L g =1Imi + (— 1Y maleiva’,  bsi= — 1 +(— 1) ms] c5v3"

(here n =1, j=1,2).

The integrand A;~'M,* (z,, ¥, t) has the singularity ¢! as ¢t— 0 in the symmetric case,
while this function as well as A;~'R,* (2, ) have the singularity ¢-? in the antisymmetric
case. Using the equilibrium conditions

h o
0

Sq(y)dy=[ of ? P2°=SP2(Il)dl‘i (2.5)
R 2P, ;
this singularity can be eliminated if the following equivalent equation is considered in place
of (2.1):

¢ 1

§ [325 + Mz )] s0)dy = Ricm) (2.6)

=h

My (22, y) = AP (M3* (22, y, 1) — MI* (23, y, 1)) Gt
0
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Ry(zo) = — 4Auvs' § A7 [Re* (20, 8) — RY* (22, )] dt

0

lon11—lon-1,3+1 — 1
dok 2n-1,1 2n-1,3 m,1 2n, 8 -
M. @y, t)= [zzh“* (6% (ans + La) - Y (N Hgng +- 12")]} @7)
lj=lj‘4——7ylj,2 (2.8)
0
Kk _
R (z,, t)-{xzt_lh_2 onwn} @.9)

0 = S — S, A= ky/k,

The expressions for M,** and R,** are obtained from the Maclauren series expansions
of M,* and R,* in t and retaining the required number of terms.

As y->h and z,— +h the function M, (z,, y) becomes unbounded. To isclate the
appropriate fixed singularity in explicit formwe represent M, (z,, y) in the form M, (2, ¥) =
M= (g, y) + M; (24, y), where M;(x,, y) = H (H is the set of functions satisfying the Holder
condition in each of the variables in the interval [—h,k] /7/), and M,®(x,, y)} is determined
by using the asymptotic properties of M* (%, ¥,t) as t— oo in the form

. I 4 &
Ml (Iz.!l)~-— Ss Z [y—h-kej(zz)+ .'I—h—ej(-n) +

i=1,2

y— h—}\.‘l(')j (z2) ]

0; (z) = h + (_1)]'12, S = 88— 8285 = (Ihy —
L) Byt

dy = (Iyy — lgg) By — (s — L) ko™ dy = (s — Lyg) Byt

Under the assumption that the unknown function has an integrable singularity, we seek
g (y) in the form

g =W E —y)* ¢ <H, 0<Re(x) <1 (2.10)

Let us consider the pratially holomorphic function

h
L
O (5)=— Sh_—;l‘_-")z dz

and let us use the relationships resulting from results in /7/

) _ g* (k) o L (—1)i-
Ok - €8: ()] = (2h)%e* [8; (22)]* sin ne + O (@), 22— (—1)h (@11)

__ctgna [ g*(—h)  ¢*(h) ° -
D)= [(h+zz)“ (h—n)“] T (@), Bk

[ @7 (2) | < Cy(z+ Ry, Re(ag) <Re(a), e=1»11,1r"

where C;(j =1,2,3) are real constants.

Taking account of the symmetry properties of the unknown function g (—y) = {F} ¢ (y), we
obtain a characteristic equation to determine the degree @ of the singularity

Sscos g + dA < 4+ dy + dgh* =0 (2.12)

from the condition for the existence of a non-trivial solution of (2.6).

It should be noted that in the case of a material of the type 2 the integral equation to
determine ¢ (y) is analogous in structure while the corresponding characteristic equation is
representable in the form

cos e + Ay + Ag cos (A,) + A, sin (A) = 0 (2.13)

(A = arctg (@5 Y), 3 = ¥V —asz®, As, Aey A7 are constants governed by the stiffness characteristics

of the material).
Using the L'Hopital rule, it can be shown that if the material characteristics tend to be

isotropic then relationships (2.12), (2.13) reduce to the equation (w is Poisson's ratio)
3 —4vcosaw +2(@—1)—82+12v—-5=0

which agrees with the corresponding equation to determine the singularity at the apex of an

isotropic wedge /8/.
An investigation of the stress o0y, is of interest. Using (1.13), we obtain

h -
ou (O z) =+ { | 725 + Malan )| 0 (@) dy + Rala) (2.14)

y— %
—h
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My (2, 9) =" AT IMo* (22, y, ) — MY (0, ¥, )] 0
]

Ro(22) = 240nt§ A7 [Ro* (22, 1) — B3 (an )] dt
[1]

The functions M,*, R,*, M,**, R,** are determined by means of the relationships (2.2),
(2.3), (2.7), (2.9) for n =2, while Z; l; are determined by (2.4) and (2.8) for j =3,4‘
moreover

Lgia = [my 4+ (—1Ymy) eq0,%2, Ly = —1 + (—1Ymy) c,,0,42 (j = 3, 4)
@y = Sy8~ — 8,05k,

Following the procedure elucidated, the expression for the singular component oy, (0, z,)
can be represented in the form

t 3
ou (0, z) = — () (2}3“ il:; e [(h _1x2)a £ D -{-1:2)0‘ ] (2.49)
P (@) = 7005 7a + deh~® + ds + dsh®, dy = (lgy — lay) S5k, 2

ds = Sy~ [(lys — I3a) Ky~ — (g — Lag) k1]

de = (lug — las) S5, 1

Defining the stress intensity coefficients by the formulas

Tl = lim (2’1)“ (h — Iz)“ O11 (O, $z), Tz = lim (2h)°‘ (h —_ .‘tz)a' O12 (0, .Tz)
Xy—=h xy—eh

on the basis of (1.8), (2.10), (2.15), we obtain
Ty = —q* (W)Y (a)sin na)t, To =g*(h), Ty= —T,T;" = [P (a)]-%sin ne (2.16)
3. 1If the boundary conditions (1.3) are given on the endface, then it follows from the

second condition ¢(z,) =0,§(p) =0,I,Y(t) =0, I, () = 0, and the first results in a singular
integral equation in U’ (y)

h
§ [ + M5 (@) | U () dy = Be° () @)
—h

T2 — Y
My (20, y)= § APM* (25, 9, t) dt

]

o

Ry (22) = AT P (22) — 205 | AF'Ro* (a2, t) dt
0

Here Mg * 1is determined by (2.2) for n=3 and Z; by (2.4) for j=25,6, where
Ligi-r=[ma + (—1) ms] casvs' /4, U,oi=(—1) mecaivs'/4 (j=5, 6)
me=AioyY, mg==Aja;, mgs= 2hs05"

The structure of the kernel of (3.1) is analogous to (2.6). Consequently, by using the

representation U’ (y) = U* (y)(h® — y?)-¥(U* = H) and performing an analogous analysis, we obtain
a characteristic equation to determine 4y

Sscosmy + ((Tsy — Lsg) MY — Lgg + Lsd By~ + Uy — Loy —(lsg — loa) MW Bey~2 = 0 (3.2)

It should be noted that (3.2) is completely equivalent to the characteristic equation
obtained in /9/ for the case of a crack intersecting the boundary of a domain. A numerical
analysis executed for different values of the stiffness parameters shows that (3.2) has only
a zero root in the interval (0, 1). This means that in the case of the boundary conditions
(1.3) the stresses have no singularities at the angular points of the half-strip. Consequently,
we shall henceforth not investigate this version of the boundary conditions.

4. A numerical investigation of the solutions obtained in the case of a clamped endface
was performed for different values of by, by, by Results of calculating the degree of singular-
ity a (solid lines), as well as the ratios of the stress intensity coefficients (dashes) for
by, =10 and &, =28, respectively, are shown in Figs.l and 2. The light and dark circles
correspond to the boundary points of materials of type 1 and 2. The results obtained indicate
that the values of ¢ and T, decrease as the stiffness grows in the principal orthotropy
directions.

In order to determine the values of the stresses along the clamped endface, we obtain
the numerical solution of (2.6) under the additional condition (2.5). To do this we use a
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method based on the Gauss-Jacobi formula of highest algebraic accuracy /10/, whose generaliz-

ation to the case of a singular integral is given in /11, 12/.
algebraic equations has the form

n
Z 4, [—L—m’_—T] + kM (e, hr,~>] 6 () = Ry (b,
J"=1

El AG (k1) =0

21-20T2 (n -1 — )

The appropriate system of

(4.4)

_ 1 o
A= AT (21— 2a) (1 — 1) [P - P y G (hT) = (1 —12)% (ht))
where {,(m=1,2,...,n—1) and 5(=1,2,...,n are the zeros of the Jacobi polynomials P %*®
() and PL%® (), respectively.
"[Z7%
a5 ’ Vi ya
;‘:/” Vi
/
g By
5 7
Fig.l
a5
a5 “ s, /8
—6”/p0 /Z/ a

4225 ' /§
a5 =7 7 az5 ¢

f— -~ / A=7
el 1 4
:Z'z/h "
~025 AV = g Zy/!
Fig.3 Fig.4
25
é2/% //
p=7 /4
725 g ts
’ | === __ /'/A‘ 7
[ m— 4
_ 7
O T,/
4 a5 7
Fig.5 Fig.6

The approximate formula to determine the normal stress is obtained on the basis of (2.14)

in the following form

1 n
ou (0, ht,) = TZ 4 [;)—f‘Tm 4 hMy (hL,, h-t].)] G (ht;) + Ra (T,

=1

(4.2)

The results of calculating the stresses caused by the action of two concentrated forces
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applied at a distance @r from the endface (P,(z) =0, P,(z;) = Pyd(z; —B)) are shown in Figs.3
and 4 (symmetric case) and 5 and 6 (antisymmetric). The solid lines are constructed for an
orthotropic material with the stiffness characteristics b, = 26.9, by = 3.6, by = 3.35 (& = 0.248),
and the dashes for a quasi-isotropicmaterial for v = 0.3 (¢ = 0.2¢5). The dash-dot line in Fig.5
corresponds to a beam theory computation of a half-strip. It should be noted that the results
shown in Fig.3 for the quasi-isotropic case are in good agreement with the corresponding
results in /1/.

The author is grateful to T.R. Tauchert (University of Kentucky, USA) for his interest
and for discussing the results.
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