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ON SINGULARITIES OF THE STATE OF STRESS OF AN ORTHOTROPIC HALF-STRIP* 

V.V. LOBODA 

The state of stress is investigated in a half-strip on whose lateral sides 
an arbitrary load is given, while boundary conditions of the first or 
second kind are realized on the endface. The method of Fourier integral 
transforms is used which enables the problem to be reduced to a singular 
integral equation with moving and fixed singularities, It is shown that 
in the case of a clamped endface the stresses have singularities at the 
angular points of the half-strip, and the dependences of the degree of 
the singularity on the elastic characteristics of the material are also 
determined. Graphs of the stress distribution along the clamped endface 
are constructed for different kinds of external load. 

Investigations of the plane problem of elasticity theory for an 
isotropic half-strip by the method of integral equations, #at take 
account of the stress behaviour in the neighbourhood of the angular points 
were carried out in /l-3/. R solution 111 has been constructed for the 
case of a symmetric load acting on the lateral siae- of the clamped half- 
strip. The case of a load applied infinitely remotelyfromtheendfaeeis 
examined in /2, 3,'. 

1. We consider an orthotropic half-strip 0 Qq< w, Is* I\< h on whose sides an 
arbitrary stress distribution is given, which without loss of qenerality we can represent in 
the form 

while on the endface there is one of the following versions of the boundary conditions: 

u,(O, Ica) = 0, E12 (O,rA = 0 (1.2) 

e11(0, %f = p (r,)* (JlB 10, r*) - 0 (1.3) 

Here and henceforth the upper expression in the braces corresponds to the symmetric case, 
and the lower expression to the antisymmetric case. It is assumed that in the case of the 
boundary conditions (1.31, the system of stresses (1.11, (1.3) is selfequilibrated, and the 
function P(z%) for the symmetric problem is even, and for the antisymmetric is odd. 

We use the following Hooke's law relationship and the appropriate Lam; equations /4/: 

(i = 1, 2; A,,, A,, A,, Aas are stiffness characteristics of the material). 
Applying the Fourier integral transform /5/ to the Eqs.fl.5) 

m 

&(t,Z2)=$ ur(3&s~)sinO.zrcZzr iiz(t,zz) = S uZ(Zi, .QCoStZr& 
0 0 

we obtain a system of equations inthetransforms 

V.6) 

For the boundary conditions (1.2), (1.3) under consideration, the right sides of system 
(6) can obviously not be calculated explicitly. Consequently, introducing the functions 
*Prikl.Hatem.I-iekhan.,50,2,263-270,1936 
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U (4, q (4 and u @It i (PI by means of the formulas 

we write system (1.6) in the form 

L1=--tbllf~D(p)xl(psa)dp 
0 

z2 = - i [blzpo (P) - A& (p)l x2 (PSZ) dp; I =2 I Q k 
0 

(1.7) 

(1.8) 

(1.9) 

The form of the solution of system (1.9) depends on the roots of the characteristic 
equation 

h! - 2alBk” + ag’ = 0 (1.10) 

al* = lb,, - (2 + va) bJ/2, at = A,,A,,-‘, Y; = A&fi-I 

The following cases are therefore possible: 1) q">aS2 are real roots; 2) ar4<a,' 
are complex roots; 3) 1 aI1 I> asa, a,%< 0 are pure imaginary roots. Taking into account that 
case 2) is encountered comparatively rarely in practice, while 3) is practically not encountered 
generally, we investigate material of type 1 in an example by noting only the fundamental 
results for a material of type 2. 

Determining the solution of system (1.9) satisfying the transforms of the boundary 
conditions (l.l), applying the inversion formulas in z1 /5/, and taking account of the relations 

we obtain the following 
subsequent analysis 

u(P)=+~vY)xl(PY)dY. 

co 

qz(P)=$ s q(Y)xz(PY)dY (1.11) 

0 Cl 

expressions for the deformation and stress which are needed in the 

h 

ur'(O,x,)=~ 
s (1.12) 
-h 

z~d,+&~~$!!$,d,+Q&,) 

h 

Al% 
oii(0, z2)=-5- 

s 
sdy-+‘l $$ dy + Q2 (~2) (1.13) 

-h 

YI = (cclbzz)-’ AS, YZ = ai1 (1 + bzl), YS = (2c&$’ Ai, y4 = - y1/2 

0,(52)‘=r, fa;‘, ~21 ._ I (~9 t) 11 (t) t w2i (5~ t) 12 (t)] dt 
0 

rl = 2n-I, r2 = rlAll, 4 = &S&(t) - &.&xa (t) 
Wpi_l(52, t) = Cgi-1,1X1(52* t, - c*i-1,S!x2 (s21 t, 

wzi (22, t) = Cgi,zXa(t) X2 (229 t) - %,1X4 (4 x1 (Q* t, 

Si = tjiki - 1, S,,, = ki + vz&, cl1 = Srki, ~12 = Sakz 

c~ = &kl, ~22 = Slkz, csi = S& C32 = S.&b Cdl = s2ss, C12 = Sl6, 

& = (1 - bz2ki2) (boki)-l, 62+i = 6i + vlki, ki = a4 + (- lr Co 

a8 = 2c4a6, ai+2 = 1/ [al* - (- 1)’ a2a]/2, bzl= I/bubzz 

Xi (22, t) = Xs(tiZZ)/X*(tih), Xi+, (t)= X4 (Q)lXS (tik) 

ti = kit 

Zi(t)=Zi’(t) + Zi’(t) + Pi(t) 

ZI” (t) = $ i U’ (y) [ai’Vl(y, t) - ai’V2 (y, t)] dy 
-h 
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h 

zz” (t)= - (2us)-1h2 s U’(Y)Va(Y, WY 
-h 

h 

II’(t)= (28&l s q(y) [Vl(Y, t)m - Vz(Y, t)mzldY 
-h 

zzq (t) = - (247.p i q(y) [VI (v, t) - Vz(Y, t) ml 4J 
-h 

OD 

~~(~)=~~~~,(r,)sintzldsl, Pz(t)=~2S Pz(s)costzldzl 

0 0 

ml = h, (2a3-‘, m, = (b,, + b,,) (2a,)-‘, ms = 5 @%I)-’ 

h, = vlbll - b,,, h, = h,b,,-‘, h, = b,, - b,, 

V* (v, t) = OXp 1-h (h - y) tl Xi+2 [Us (h - Y) tl 

Relations (1.12) and (1.13) have been obtained taking the 
into account: 

following integration formulas 

(1.14) 

whose validity follows from (1.11) and the limit value of the integral /6/ 

2. We assume that the endface of the half-strip is rigidly clamped. Then from the first 
relationship of (1.2) it follows that U(xJ = 0, r(p) = 0, Zl”(t) = 0, Z,“(t) = 0, while the 
second reduces to a singular integral equation in n(Y) 

h 

S[ 
1 + M1” (xz, g)] Q (Y) 4/ = RI” (xz) 22 - I (2.4) 

-h 

MI” (xz, v) = 5 @MI* (22, y, t) dt 
0 

RlO(x-J = - 4A& f &‘R,* (x2, t) dt 

‘~~*(xz,Yrt)=Zan_ltart)exP~--kz(h-Y)Il+ 
zz,(~z,t)exP[-ki(h-~y)tl 

(2.2) 

&* (rz, t)=~zn-~(xz, t)&(t) + wzn(~, t)&(t) (2.3) 

zj (x2v t)’ [ljl - ljZX4 (t)l Xl (G t, - Ilj.9 - ljPXS (t)l xZ (xZ* t, (2.4) 

lj, et-1 = Im + (- 1)’ m21 Clj?G1t lj, *i = - 11 + (- 1)’ msl CZjVi’ 

(here n = 1, f = 1, 2). 
The integrand At-'M,* (xz, y, t) has the singularity t-r as t-0 in the symmetric case, 

while this function as well as A,-lR,+ (x*,t) have the singularity t-% in the antisymmetric 
case. Using the equilibrium conditions 

h 

s 
-h 

q(y)dy=[2;2c.]. &‘=j&(x,)dxl (2.5) 

this singularity can be eliminated if the following equivalent equation is considered in place 
of (2.1): 

h 

S[ 
1 
+a-- Y 

-h 

+Ml(xz, y)] q(Y)&/=Ri(xz) 

m 

(2.6) 

Ml (a Y) = 5 AL’ [MI* (xz, Y, t) - M,**(s, Y, t)l dt 
0 



198 

RI (~2) = - 4Azz$ s LI;’ [RI* (~2, t) - R:* (xz, t)] dt 
0 

My(x29 y, 4 = ( L-1,1 - L1,3 + L,l - 1 2% s 

x-p p-1 (&_l + I&J + y (h-'l,-l + Zzn)] I (2.7) 

lj = lj* 4 - hlj* 2 (2.8) 

(2.9) 

co1 = S,h - S&l, h = k,lk, 

The expressions for h'f,,** and R,** are obtained from the Maclauren series expansions 

of M,,* and R,* in t and retaining the required number of terms. 
AS Y--+h and z%--+ +h the function M,(z~, y) becomes unbounded. To isolate the 

appropriate fixed singularity in explicitformwe represent M,(I,, y) in the form M1 (x2, y) = 

M,-(G, Y) + Mt (G, Y), where Mf (% Y) E H (H is the set of functions satisfying the Holder 
condition in each of the variables in the interval 1--h, hl /7/) , and Mlm(zz, y) is determined 
by using the asymptotic properties of Ml* (z,,y,t) as t+ 00 in the form 

‘6 
g - h - h-w j (22) 1 

e, (4 = h + (-1) j% s, = s,s, - s,s,, a, = (I,, - 

4,) k,-’ 
d, = (J,l - La) k,-’ - (4, - 40 b-l, 4 = (ha - LJ kl-* 

Under the assumption that the unknown function has an integrable singularity, we seek 

Q (Y) in the form 

P (Y) = 9* (Y) (h2 - Y")-", q* (Y) E H, 0 < Re (a) <I (2.10) 

Let us consider the pratially holomorphic function 

and let us use the relationships resulting from results in /7/ 

@ [h + eei (x2)] = - q* (‘4 
(2h)aea[9i(.zn)]a sin xa 

+ Qi” (X2), X2 * (-l)i-v2 (2.11) 

1 
+ @SO (x2), x2 --) + h 

1 @‘jo (z) 1 < Cj (z f h)‘*o, Re (a,) < Re (a), e = h, 1, h-j 

where Cj(j = 1,2,3) are real constants. 

Taking account of the symmetry properties of the unknown function q(-y)= {r} q(y), we 

obtain a characteristic equation to determine the degree a of the singularity 

S, co9 na + dlhQ + d, + d,P = 0 (2.12) 

from the condition for the existence of a non-trivial solution of (2.6). 
It should be noted that in the case of a material of the type 2 the integral equation to 

determine q(y) is analogous in structure while the corresponding characteristic equation is 
representable in the form 

cos 3tm + a, + a8 cos (ada) + a, sin da) = 0 (2.13) 

(a, = arctg Fi,~,-l), E, = 1/db2, a,, hs, a, are constants governed by the stiffness characteristics 

of the material). 
Using the L'Hopital rule, it can be shown that if the material characteristics tend to be 

isotropic then relationships (2.12), (2.13) reduce to the equation (Y is Poisson's ratio) 

which agrees with the 

isotropic wedge /a/. 

An investigation 

(3 - 49 c&q net, + 2 (a - 1)2 - w + 12y - 5 = 0 

corresponding equation to determine the singularity at the apex of an 

of the stress ull is of interest. Using (1.13), we obtain 
h 

Ull (0, x2) = + * 51 --IL_ + M2 (~2, Y,] q (Y)~Y + Rzkd Y - 11 
--h 

(2.14) 
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M2 (x2, y) = s x1 [Mz* (x2, y, t) - kc* (a Y, 01 dt 
0 

Rz(sz)= 2‘411n -~~*~'rlr,'(L2,1)-ll~(r2,t)ldl 

The functions M,*, R,*, M,**, l?,** are determined by means of 

(2.3), (2.7), (2.9) for n= 2, while Z,,El are determined by (2.4) 

moreover 

the relationships (2.21, 

and (2.8) for j = 3,4, 

h-1 = 1% + (-l)jm,l csiu,Y2, l,,zi = -II + (--l)‘m,l cl,a,4/2 (j = 3, 4) 

01 = S&k,-’ - S,&,k,-’ 

Following the procedure elucidated, the expression for the singular component a,,(O,rJ 
can be represented in the form 

(2.15) 

q (a) = y,cos na + ~3,h-~ + d, + d4?P, d4 = (Z,, - I,,) S,-lk,-l 

d, = S,-’ [(Za3 - &a) k,-’ - (Z,, - ZdJ k,-I] 

da = (Zd5 - I,,) S,-‘k,-’ 

Defining the stress intensiSy coefficients by the formulas 

Tr = lim, (2h)a (h - zz)” Uli (0, XZ), Tz= lim (2h)a(h - 5_+012 (0, 52) 
x.-h 

on the basis of (1.8), (2.101, (2.15), we obtain 

T, = -_9* (h)$ (a)(sin ncz-', T2 = q* (h), T8 = --T,T,-' -[$(a)]-'sin na 

3. If the boundary conditions (1.3) are given on the endface, then it follows from the 

second condition q(r,J = 0, q(p) = 0, Ilq (t) = 0, I,q (t) = 0, and the first results in a singular 
integral equation in U'(y) 

h 

SE & + Ms” (52, Y)I L” (~1 dy = ho (52) 

-II 
(3.1) 

I&” (x2) = nA;:y,‘P (x2) - 2~;’ 1 A;‘&* (x2, t) dt 
0 

Here M,* is determined by (2.2) for n= 3 and Zj by (2.4) for j= 5,6, where 

Zj,si-1= [Q + (-i)jmB] c~iy~‘/4, Zj,zi=(-l)‘mc4ivs1/4 (i= 5, 6) 

m4 = hja,-l, m6 = hia;‘, ma = 2hzai’ 

The structure of the kernel of (3.1) is analogous to (2.6). Consequently, by using the 
representation U'(y)= U*(y)@*- y“)-y(U* EH) and performing an analogous analysis, we obtain 
a characteristic equation to determine y 

S,‘=‘V + [(Zm - Z,,) h” - I,, + I,41 k,-’ + [la1 - Zaz -(Ze, - Zu) hvl k,-’ = 0 
It should be noted that (3.2) is completely equivalent to the characteristic equation 

obtained in /9/ for the case of a crack intersecting the boundary of a domain. A numerical 
analysis executed for different values of the stiffness parameters shows that (3.2) has only 
a zero root in the interval (0, 1). This means that in the case of the boundary conditions 
(1.3) the stresses have no singularities at the angular points of the half-strip. Consequently, 
we shall henceforth not investigate this version of the boundary conditions. 

4. A numerical investigation of the solutions obtained in the case of a clamped endface 

was performed for different values of b,,, b,,, b,,. Results of calculating the degree of singular- 
ity a (solid lines), as well as the ratios of the stress intensity coefficients (dashes) for 
b,, = 10 and b,, = 28 , respectively, are shown in Figs.1 and 2. The light and dark circles 
correspond to the boundary points of materials of type 1 and 2. The results obtained indicate 
that the values of Q and T, decrease as the stiffness grows in the principal orthotropy 
directions. 

In order to determine the values of the stresses along the clamped endface, we obtain 
the numerical solution of (2.6) under the additional condition (2.5). To do this we use a 
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method based on the Gauss-Jacobi formula of highest algebraic accuracy /lo/, whose genaraliz- 
ation to the case of a singular integral is given in /ll, 12/. The appropriate system of 
algebraic equations has the form 

” 

1 
m + hM1 (Km, 
b7I , 

htj) 
1 

G (hrj) = R, (h&J (4.1) 

5 AjG (hj) = 0 
j=l 

PW (72 + 1 - a) 

where c,,,(m = i,z,..., PI - 1) and 9 (j = 1, 2, . . ., n) 
(6) and P(,-ana)(z), respectively. 

are the zeros of the Jacobi polynomials Pt_y#l*) 

Fig.1 

Fig.3 

Fig.5 

Fig.2 

Fig.4 

-AZ5 
D 05 7 

Fig.6 

The approximate formula to determine the normal stress is obtained on the basis of (2.14) 

in the following form 

(4.2) 

The results of calculating the stresses caused by the action of two concentrated forces 
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applied at a distance bh from the endface (P1(z,)= 0, Pr(zl) = P,6(q - p)) are shown in Figs.3 
and 4 (symmetric case) and 5 and 6 (antisymmetric). The solid lines are constructed for an 
orthotropic material with the stiffness characteristics b, = 26.9, b, = 3.6, b,, = 3.35 (a = 0.248), 
and the dashes for a quasi-isotropicmaterialfor ~=0.3 (01=&2g5). The dash-dot line in Fig.5 
corresponds to a beam theory computation ofahalf-strip. It should be noted that the results 
shown in Fig.3 for the quasi-isotropic case are in good agreement with the corresponding 
results in /l/. 

The author is grateful to T.R. Tauchert (University of Kentucky, USA) for his interest 
and for discussing the results. 
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